2023-11-20 论文 Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics
发布于 2023年11月20日 • 2 分钟 • 516 字
Abstract
- types
- 第一种分类
- data uncertainty (measurement noise)
- model uncertainty ( limited data)
- 第二种分类
- epistemic uncertainty
- 认知上的不确定性,通常是由于没有足够的知识(数据)而产生
- can be reducible
- 分为两类
- model-form uncertainty
- 由于模型的选择导致,例如architectures, activation functions or kernel functions
- parameter uncertainty
- 在训练过程产生,由于数据不够导致
- model-form uncertainty
- aleatory uncertainty
- stems from physical systems, 具有随机性, cannot be reducible
- e.g. noises
- 这种类型的不确定性在ML模型里面被看成是似然函数的一部分(a part of the likelihood function)
- 也被叫做data uncertainty
- 捕捉这种不确定性的方式有:同方差 homoscedastic和异方差 heteroscedastic
- 例子:
- test data和train data不同分布:epistemic uncertainty (model performs poorer in extrapolation than in interpolation)
- 测量数据由仪器导致的误差是aleatory Unc, 大试如果由于精度原因导致,则属于epistemic unc,因为提高精度可以减少这个误差
- epistemic uncertainty
- 第一种分类
- causes
- methods:
- Gaussian process regression
- a ML method with UQ capability
- 一般不用来quantify uncertainty of a final surrogate
- 一般用来在高度不确定的采样空间里采样,来减少训练样本的数量
- to build an accurate surrogate within some lower and upper bounds of input variables
- to find a globally optimally design for black-box objective function
- 一般不评估GPR的UQ质量
- 因为预测一般在pre-defined design bounds
- Bayesian neural network
- Monte Carlo dropout as an alternative to traditional Bayesian neural network
- neural network ensemble
- neural network ensemble consisting of multiple neural networks
- deterministic UQ methods
- Gaussian process regression
- metrics
- classification
- probability can be viewed as uncertainty
- regression
- confidence interval :
- 没看懂: prediction may be 120 ± 15, in weeks, which represents a two-sided 95% confidence interval (i.e.,∼1.96 standard deviations subtracted from or added to the mean estimate assuming the model-predicted RUL follows a Gaussian distribution).
- confidence interval :
- classification